next | previous | forward | backward | up | top | index | toc | Macaulay2 web site

norm

Synopsis

Description

i1 : printingPrecision = 2

o1 = 2
i2 : R = RR_100

o2 = RR
       100

o2 : RealField
i3 : M = 10*random(R^3,R^10)

o3 = | .031 2.1 8.8 .13 5.8 7.1 .91 8.9 5.6 6.3 |
     | 8.1  6.8 9.1 10  4.7 3.9 2.7 6.6 1.6 6   |
     | 4.5  2.8 8.5 1.3 7.2 1.8 9.1 .77 .79 8.3 |

             3       10
o3 : Matrix R  <--- R
i4 : norm M

o4 = 9.97682497689365581942113684961

o4 : RR (of precision 100)
i5 : norm_(numeric_20 infinity) M

o5 = 9.97682

o5 : RR (of precision 20)
i6 : norm {3/2,4,-5}

o6 = 5
The norm of a polynomial is the norm of the vector of its coefficients.
i7 : RR[x]

o7 = RR  [x]
       53

o7 : PolynomialRing
i8 : (1+x)^5

      5     4      3      2
o8 = x  + 5x  + 10x  + 10x  + 5x + 1

o8 : RR  [x]
       53
i9 : norm oo

o9 = 10

o9 : RR (of precision 53)

Ways to use norm :