
Finite Fields Computations in Maxima

Fabrizio Caruso caruso@dm.unipi.it

Jacopo D’Aurizio elianto84@gmail.com

Alasdair McAndrew amca01@gmail.com

April, 2008

This file documents the Maxima file “gf.mac”, which is a Maxima package for finite fields.
This package is part of standard Maxima since version 5.14. If you use version 5.15 the package
is split in two files gf.mac and gf roots.mac. In subsequent versions the whole package is
contained in gf.mac. This package is also suitable for teaching and exploration and it offers an
easier interface than other comparable libraries such as the finite library in Axiom (provided by
the domain constructor FFP). The first version of the package was based on the paper “Finite
Fields Manipulations in Macsyma” by Kevin Rowley and Robert Silverman, SIGSAM 1989, but
for which the source code is long gone. The version included in Maxima contains lots of new
features and optimizations implemented by Fabrizio Caruso and Jacopo D’Aurizio.

In order to use the package it is enough to start and version of Maxima from 5.15 and use the
command:

(%i2) load(gf);

will load all the functions. If you use version 5.14 then you must also do

(%i2) load(gf_roots);

Getting started

All user commands are prefixed with “gf_”; you need to start by entering the parameters for
your field. All fields in this package are of the form

Fp[x]/m(x)

where p is a prime number and m(x) is an polynomial irreducible over Fp. If the degree of m(x)
is n, the the finite field will contain pn elements, each element being a polynomial of degree
strictly less than n, and all coefficients being in {0, 1, . . . , p − 1}. Such a field is called a finite
field or Galois field of order pn, and is denoted Fpn . Note that although there are many different
irreducible polynomials to choose from, if m(x) and n(x) are different polynomials irreducible
over Fp and of the same degree, then the fields

Fp[x]/m(x)

and

Fp[x]/n(x)

are isomorphic.

1



In these fields, addition and subtraction are performed on the coefficients modulo p, and mul-
tiplication and division modulo m(x).

To create a field, you need the parameters p, m(x) and optionally n which is the degree of m(x).
The form of the command is

gf_set(p,n,m(x));

or

gf_set(p,m(x));

or

gf_set(p);

gf_set checks that p is prime, and if GF IRREDUCIBILITY CHECK is set to true it also checks
whether m(x) is irreducible. If these conditions are satisfied, the command performs some
background calculations (discussed below), and returns true.

(%i3) gf_set(2,4,x^4+x+1);

(%o3) true

The package comes also with two test files gf test.mac and gf hard test.mac which can be
run with the command batch(<path to test file>,test).

Having set up the field, we can now perform arithmetic on field elements:

Addition/subtraction. These are performed with the commands “gf_add” and “gf_sub”. In
the particular field entered above, since all arithmetic of coefficients is performed modulo 2,
addition and subtraction are equivalent:

(%i4) a:x^3+x^2+1;

(%o4) x3 + x2 + 1

(%i5) b:x^3+x+1;

(%o5) x3 + x + 1

(%i6) gf_add(a,b);

(%o6) x2 + x

Multiplication. This is performed with the command “gf_mul”:

(%i7) gf_mul(a,b);

(%o7) x2 + x

2



Inversion and division. The inverse of a field element p(x) is the element q(x) for which their
product is equal to 1 (modulo m(x)). This is performed using “gf_inv”. In a finite field, division
is defined as multiplying by the inverse; thus

a(x)/b(x) = a(x)(b(x))−1.

These operations are performed with the commands “gf_inv” and “gf_div”:

(%i8) gf_inv(b);

(%o8) x2 + 1

(%i9) gf_div(a,b);

(%o9) x3 + x2

(%i10) gf_mul(a,gf_inv(b));

(%o10) x3 + x2

Exponentiation. To raise a field element to an integer power, use “gf_exp”:

(%i11) gf_exp(a,10);

(%o11) x2 + x + 1

(%i12) gf_exp(a,15);

(%o12) 1

Random elements. Finally, a random element can be obtained with “gf_rand()”:

(%i13) makelist(gf_rand(),i,1,4);

(%o13) [x3 + x2 + x, x3 + x2 + x + 1, x3 + x2 + x + 1, x2 + x]

(%i14) M:genmatrix(lambda([i,j],gf_rand()),3,3);

(%o14)




x3 + x2 + x x3 x3 + x2

x2 x3 + x2 + 1 x3 + x + 1
x2 + x x3 + x2 + x + 1 x2





Primitive elements, powers and logarithms

The non-zero elements of a finite field form a multiplicative group; a generator of this group is
a primitive element of the field. The command “gf_findprim()” finds a primitive element:

(%i15) gf_findprim();

(%o15)
x

Given that any non-zero element in the field can be expressed as a power of this primitive
element, this power is the index of the element; its value is obtained with “gf_ind”:

(%i16) a:x^3+x^2+1;

(%o16) x3 + x2 + 1

(%i17) gf_ind(a);

(%o17) 13

3



(%i18) ev(a=gf_exp(x,13)),pred;

(%o18) true

Since every element of the field can be represented as a polynomial

an−1x
n−1 + an−2x

n−2 + · · · + a2x
2 + a1x + a0

where every coefficient ai satisfies 0 ≤ ai ≤ p − 1, a field element can also be considered as a
list:

[an−1, an−2, . . . , a2, a1, a0].

This list can be considered as the “digits” of a number in base p, in which the field element is
equivalent to the number

an−1p
n−1 + an−2p

n−2 + · · · + a2p
2 + a1p + a0.

Thus every polynomial is equivalent to a number between 0 and pn − 1; this number can be
obtained by the “poly2num” command. This command is actually not needed by the user; it is
used for some internal commands. The other direction is given by “num2poly”.

Since every non-zero field element a = a(x) is both equivalent to a number A and a power i of
a primitive element e, we can create a list of powers corresponding to particular numbers. This
list, gp, which is created by gf_set, is defined as follows: its i-th element is the numerical form
of the i-th power of the primitive element. Thus, if

a(x) ≡ A ≡ ei

where e is the primitive element, then the i-th element of gp is A. By definition we have
epn

−1 = 1.

The numbers A run over all integers from 1 to pn − 1, and the powers i run over all the integers
from 0 to pn − 2, there is a corresponding “logarithm” list, lg. The logarithm table may be
considered to be indexed from 0 to pn − 2, and its i-th element is the power corresponding to
that element:

(%i19) lg[10];

(%o19) 9

(%i20) num2poly(9);

(%o20) x3 + x

(%i21) gf_ind(%);

(%o21) 9

The creation of the lists gp and lg may take a few seconds, but they only have to be done once.

Logarithms. The list lg produces the logarithm (with respect to the primitive element e) of
any non-zero element of the field. But the logarithm of any element relative to the base of
another can be obtained with the command “gf_log”:

(%i22) a:x^2+1+1;

(%o22) x2 + x + 1

(%i23) b:x^3+x^2+1;

(%o23) x3 + x2 + 1

(%i24) gf_log(a,b);

(%o24) 10

4



We conclude that, in our field, a = b10.

Primitive elements. A given field will have many primitive elements, and the command “gf_primep”
tests an element to see if it is primitive:

(%i25) gf_primep(x^3+x+1);

(%o25) true

(%i26) gf_primep(x^2+x);

(%o26) false

Order. By definition, any element a of the field will satisfy apn
−1 = 1. The order of a is the

lowest power m for which am = 1. It will be a factor of pn − 1, and is obtained with “gf_ord”:

(%i27) gf_ord(x^2+x);

(%o27) 3

(%i28) gf_ord(x^3+x+1);

(%o28) 15

Minimal polynomials

Associated with every element a ∈ GF (pn) is a polynomial p(x) which satisfies:

1. p(a) = 0,
2. the coefficient of the highest power in p(x) is one,
3. for any other polynomial q(x) with q(a) = 0, p(x) is a divisor of q(x).

The polynomial p(x) is thus, in a very strict sense, the smallest polynomial which has a as a
root. It is the minimal polynomial of a. The command “gf_minpoly” calculates it:

(%i29) a:x^3+x+1$

(%i30) p:gf_minpoly(a);

(%o30) z5 + z3 + 1

To check this, substitute a for z in p:

(%i31) subst(a,z,p);

(%o31) (x3 + x + 1)5 + (x3 + x + 1)3 + 1

(%i32) gf_eval();

(%o32) 0

5



An application: the Chor-Rivest knapsack cryptosystem

The Chor-Rivest knapsack cryptosystem is the only knapsack cryptosystem which doesn’t use
modular arithmetic; instead it uses the arithmetic of finite fields. Although it has been broken,
it is still a very good example of finite field arithmetic.

Assuming the two protagonists are Alice and Bob, and Alice wishes to set up a public key for
Bob to encrypt messages to her. Alice chooses a finite field Fpn = Fp[x]/m(x), and a random
primitive element g(x). She then computes ai = logg(x)(x + i) for every i ∈ Fp. She selects a
random integer d for which 0 ≤ d ≤ pn − 2, and computes ci = (ai + d) (mod pn − 1). Her
public key is the sequence ci, with the parameters p and n.

To encrypt a message to Alice, Bob encodes the message as binary blocks of length p which
contain n ones. Given one such block M = (M0,M1, . . . ,Mp−1), Bob creates the cipher text

c =

p−1
∑

i=0

Mici (mod pn − 1)

which he send to Alice.

To decrypt c, Alice first computes r = (c−nd) (mod pn−1), and then computes u(x) = g(x)r

(mod m(x)). She then computes s(x) = u(x)+m(x) and factors s into linear factors x+ ti. The
ti values are the positions of the ones in the message block M .

Actually, the complete cryptosystem also involves a permutation, which is applied to the se-
quence ai to create ci. But for this example we are just interested in the field arithmetic.

We shall choose the example given in chapter 8 of HAC, but without the permutation. Here the
field is

GF (74) = F7[x]/(x4 + 3x3 + 5x2 + 6x + 2)

and the primitive element chosen is g(x) = 3x3 + 3x2 + 6 and the random integer d is 1702.

First, Alice must compute her public key:

(%i33) gf_set(7,4,x^4+3*x^3+5*x^2+6*x+2);

(%o33) true

(%i34) g:3*x^3+3*x^2+6;

(%o34) 3x3 + 3x2 + 6

(%i35) gf_primep(g);

(%o35) true

(%i36) a:makelist(gf_log(x+i,g),i,0,6);

(%o36) [1028, 1935, 2054, 1008, 379, 1780, 223]

(%i37) d:1702$

(%i38) c:makelist(mod(a[i]+d,base^exp-1),i,1,7);

(%o38) [330, 1237, 1356, 310, 2081, 1082, 1925]

Now Bob can encrypt a message to Alice; suppose one such block is [1, 0, 1, 1, 0, 0, 1], which is a
block of length 7 which contains exactly 4 ones.

(%i39) M:[1,0,1,1,0,0,1];

(%o39) [1, 0, 1, 1, 0, 0, 1]

(%i40) ord:base^exp-1;

(%o40) 2400

6



(%i41) c:mod(sum(M[i]*c[i],i,1,7),ord);

(%o41) 1521

This last value is the ciphertext. Alice now needs to decrypt it:

(%i42) r:mod(c-exp*d,ord);

(%o42) 1913

(%i43) u:gf_exp(g,r);

(%o43) x3 + 3x2 + 2x + 5

(%i44) s:u+px;

(%o44) x4 + 4x3 + 8x2 + 8x + 7

(%i45) factor(s);

(%o45) (x − 1)x(x + 2)(x + 3)

The ti values are thus −1, 0, 2, 3, which modulo 7 are 6, 0, 2, 3—and these are the positions of
the ones in M .

Matrices

There are two commands for dealing with matrices over finite fields: “gf_matinv” for inverting
a matrix, and “gf_matmul” for multiplying matrices. Using the matrix M generated previously:

(%i46) MI:gf_matinv(M);

(%o46)




x2 x3 + x2 + x + 1 x3

x3 + x + 1 x2 + x x3 + x + 1
x 0 x3 + x + 1





(%i47) gf_matmul(M,MI);

(%o47)




1 0 0
0 1 0
0 0 1





Normal Bases

Any field GF (pn) may be considered as a vector space over Fp; one basis is the set

{1, x, x2, . . . , xn−1}

which is called the polynomial basis. A normal element is a field element e for which the set

{e, ep, ep2

, . . . , epn−1

}

forms a basis. There are several commands for dealing with normal elements and bases. The
command “gf_findnorm()” finds a normal element by simply picking field elements at random
and testing each one for normality. Although this is a probabilistic algorithm, in practice it
works very quickly:

(%i48) gf_set(2,10,x^10+x^3+1);

(%o48) true

(%i49) pe:gf_findnorm();

(%o49)

7



x9 + x7 + x6 + x5 + x4 + x2 + x

The command “gf_sfindnorm()” is a brute force search through all field elements; in general
it is slower than gf_findnorm().

Having found a normal element the command “gf_normbasis()” produces a matrix the rows
of which are the coefficients of the basis elements epk

. This command takes an optional pa-
rameter; a polynomial p. If present, gf_normbasis() checks if the field element is normal,
and if so, produces the matrix, otherwise prints an error message. If the parameter is not given,
gf_normbasis() first finds a normal element, and then uses that element to produce the matrix.

With the normal basis, the command “gf_nbrep(p,M)” produces the normal basis representa-
tion of p, with respect to the basis M, as a list of coefficients. One attraction of using normal
bases is that much arithmetic can be simplified; for example, in a normal basis representation,
a power of the prime p is equivalent to a shift of coefficients:

(%i50) M:gf_normbasis(pe)$

(%i51) a:gf_rand();

(%o51) x9 + x7 + x6 + x5 + x3 + x2 + x

(%i52) gf_nbrep(a,M);

(%o52) [0, 0, 0, 1, 0, 1, 0, 0, 1, 0]

(%i53) gf_nbrep(gf_exp(a,2),M);

(%o53) [0, 0, 1, 0, 1, 0, 0, 1, 0, 0]

Large fields

If the flag largefield is set to false then the gf set command will not find a primitive
element, instead it will compute a full table of powers and logarithms. If the flag is set to true,
the opposite happens: no tables are precomputed and a primitive element is found. The default
value for largefield is true because this is the best choice for large and medium size finite
fields.

The default value of largefield has the following effects

1. A primitive element is found, but the power and logarithm tables are not calculated.
2. The command gf_exp, instead of using table lookups, uses the simple “repeat squaring”

algorithm.
3. The command gf_log, instead of using table lookups, uses the Pohlig-Hellman algorithm.

This is most efficient if pn − 1 has only small prime factors.

A disadvantage is that every operation now may take more time when the finite field is extremely
small.

(%i54) largefield:true$

(%i55) gf_set(2,20,x^20+x^3+1);

(%o55) true

(%i56) a:x^15+x^5+1;

(%o56) x15 + x5 + 1

(%i57) gf_ind(a);

(%o57) 720548

8



(%i58) gf_exp(a,3^12);

(%o58) x17 + x16 + x13 + x12 + x11 + x3 + x2 + x

It is up to the user to decide when a field is large enough for the largefield flag to be set to
false.

Square and cube roots

Multiple algorithms have been implemented in order to solve the square and cube root extraction
problem over Fp; all of them basically perform an exponentiation in a extension field (ie Fp2 =
Fp[x]/(x2 + bx + a) or Fp3 = Fp[x]/(x3 − bx− a)) through a repeated-squaring scheme, reaching
so a complexity of O(n log(p)) multiplications in Fp; however, due to some differences in the
representation and multiplication of elements in the extension field, they do not have exactly
the same running time:

1. msqrt(a,p) returns the two square roots of a in Fp (if they exist) representing every k-th
power of x in Fp[x]/(x2 + bx + a) as the first column of the matrix Mk, where M is the
companion matrix associated with the polynomial x2 + bx + a and b2 − 4a is a quadratic
non-residue in F

∗

p. It requires 5 log2(p) multiplications in Fp.
2. ssqrt(a,p) returns the two square roots of a in Fp (if they exist) using Shanks algorithm.

It requires 5 log2(p) multiplications in Fp.
3. gf_sqrt(a,p) returns the two square roots of a in Fp (if they exist) using the Muller

algorithm (an improved, shifted version of Cipolla-Lehmer’s) and should reach the best
performance, requiring only 2 log2(p) multiplications in Fp.

4. mcbrt(a,p) returns the cube roots of a in Fp (if they exist) representing every k-th power
of x in Fp[x]/(x3 + bx + a) as the vector (M2,2,M2,3,M3,2) in the matrix Mk, where M
is the companion matrix associated with the polynomial x3 + bx + a, irreducible over Fp

(Stickelberger-Redei irreducibility test for cubic polynomials is used). It requires 10 log2(p)
multiplications in Fp.

5. scbrt(a,p) follows the same multiplication steps of mcbrt(a,p), using a simpler poly-
nomial representation for the elements of the field extension. It requires about 11 log2(p)
multiplications in Fp.

6. gf_cbrt(a,p) returns the cube roots of a in Fp (if they exist) using the generalized
Shanks algorithm: it’s pretty fast, requiring about 4 log2(p) multiplications in Fp, being
so the candidate choice for cube root extraction.

Other implemented routines, using about the same ideas, are:

1. fastfib(n) and fastlucas(n), returning the n-th Fibonacci and Lucas numbers through
a Muller-like scheme; they require exactly 2 squarings and 3 sums for each bit in the binary
representation of n, having so a bit-complexity bounded by 2 log2(n)3+ε, with ε depending
on the adopted integer squaring algorithm.

2. qsplit(p) and csplit(p), splitting a prime p over Z[i] and Z[ω], ie finding (a, b) such
that p = a2 + b2 (this is possible only when p is in the form 4k + 1) or p = a2 + ab + b2

(this is possible only when p is in the form 3k +1), by the reduction of a binary quadratic
form of the proper discriminant. They have the same complexity of the computation of a
single Jacobi symbol, O(log(p)2) bit-operations.

9



(%i8) msqrt(64,1789); ssqrt(64,1789); gf_sqrt(64,1789);

(%o8) [1781, 8]

(%o9) [8, 1781]

(%o10) [1781, 8]

(%i11) mcbrt(64,1789); scbrt(64,1789); gf_cbrt(64,1789);

(%o11) [4, 608, 1177]

(%o12) [4, 608, 1177]

(%o13) [4, 1177, 608]

(%i14) modulus:1789; factor(x^3-64); modulus:false;

(%o14) true

(%o15) (x − 608)(x − 4)(x + 612)

(%o16) false

(%i17) qsplit(1789); csplit(1789);

(%o17) [5, 42]

(%o18) [12, 35]

(%i19) fastfib(137); fastlucas(141);

(%o19) 19134702400093278081449423917

(%o20) 293263001536128903730947142076

10


